Readington Township Public Schools

8th Grade Coding & App Design (2nd year students)

Authored by: Lora Petersen

Reviewed by: Sarah Pauch Supervisor of Math, Science, and Technology

Approval Date: September 25, 2018

Members of the Board of Education:

Laura Simon, President
Anna Shinn, Vice-President
Wayne Doran
Ray Egbert
Carol Hample
Robyn Mikaelian
Melissa Szanto
Thomas Wallace
Eric Zwerling

Superintendent: Dr. Jonathan Hart

I. OVERVIEW

Coding is a cycle course for 7th and 8th-grade students. It is designed to expose students to computer science and encourage them to create with technology rather than just consume it. Students will learn and engage in the strategies of computational thinking throughout the course which includes decomposition, pattern matching, abstraction, and algorithms. In 7th grade, students will also learn how to write programs for various types of games and will create their own game with knowledge gained throughout the course. In 8th grade, students will learn how to write code to design apps and will design their own app using knowledge gained in this course.

II. STUDENT OUTCOMES (Linked to ISTE Standards - International Society for Technology in Education)

The course objectives will cover but are not limited to these standards:

- 1. Empowered Learner: Students leverage technology to take an active role in choosing, achieving and demonstrating competency in their learning goals, informed by the learning sciences.
 - 1b. Students build networks and customize their learning environments in ways that support the learning process.
 - 1c. Students use technology to seek feedback that informs and improves their practice and to demonstrate their learning in a variety of ways.
 - 1d. Students understand the fundamental concepts of technology operations, demonstrate the ability to choose, use and troubleshoot current technologies and are able to transfer their knowledge to explore emerging technologies.
- 2. Digital Citizen: Students recognize the rights, responsibilities and opportunities of living, learning and working in an interconnected digital world, and they act and model in ways that are safe, legal and ethical.
 - 2a. Students cultivate and manage their digital identity and reputation and are aware of the permanence of their actions in the digital world.
 - 2b. Students engage in positive, safe, legal and ethical behavior when using technology, including social interactions online or when using networked devices.
 - 2c. Students demonstrate an understanding of and respect for the rights and obligations of using and sharing intellectual property.
 - 2d. Students manage their personal data to maintain digital privacy and security and are aware of data-collection technology used to track their navigation online.
- 4. Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
 - 4a. Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
 - 4c. Students develop, test and refine prototypes as part of a cyclical design process.
 - 4d. Students exhibit a tolerance for ambiguity, perseverance and the capacity to work with openended problems.
- 5. Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
 - 5a. Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
 - 5c. Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.
 - 5d. Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
- 6. Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
 - 6a. Students choose the appropriate platforms and tools for meeting the desired objectives of their creation or communication.

- 6b. Students create original works or responsibly repurpose or remix digital resources into new creations
- 6d. Students publish or present content that customizes the message and medium for their intended audiences.
- 7. Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
 - 7b. Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.
 - 7c. Students contribute constructively to project teams, assuming various roles and responsibilities to work effectively toward a common goal.

Standards for Mathematical Practice

- MP1 Make sense of problems and perseverance in solving them
- MP2 Reason abstractly and quantitatively
- MP3 Construct viable arguments and critique the reasoning of others
- MP4 Model with mathematics
- MP5 Use appropriate tools strategically
- MP6 Attend to precision
- MP7 Look for and make use of structure
- MP8 Look for an express regularity in repeated reasoning

III. COURSE OBJECTIVES - Eighth Grade Year 2

Foundations of Coding

- Introduction to CoffeeScript
 - Identify the ways to use "turn" instructions: Step, turn, turnTo,
 - Learn the syntax of CoffeeScript
 - Discuss the concept of planning and its importance in coding
 - Practice using functions

• Loops

- Define loop as a programming term
- Understand why using loops in programming is more efficient
- Discuss proper syntax for loops

Variables

- Define variable as a programming term
- Discuss how and why we use variables in programming
- Learn how to use additional functions

• <u>Arrays</u>

- Understand the concept of an array and its elements
- Learn how to use indexes to access array elements
- Learn how to define new arrays
- Work with arrays that contain objects of different types

For Loops

- Identify the difference between a simple loop and a "for" loop
- Discuss how and when to use "for" loops
- Learn how to use the loop variable in other ways then passing it as an argument
- Practice for loops
- Revisit the concept of array indexing
- Use nested loops

Functions

- Revisit function and define comment as programming terms
- Define main code

- Work with functions
- Work with comments
- Define debugging
- Read and write functions
- Review, practice and deepen their expertise in functions
- Learn and practice returning values from a function they write
- Practice returning values from functions and calling functions in the new syntax
- Practice function definitions

Until Loops

- Review simple loops and for loops
- Work with "until" loops
- Work with the function "near"
- Practice until loops definitions
- Write an until loop from scratch
- Use functions with "until" loops

Conditionals

- Learn about conditionals and use them in code
- Practice using if statements
- Use if-else statements
- Write code that uses if-else from scratch
- Use if-else within a function definition
- Multiple conditions
- Use if inside a for loop

• Logical Operators

- Use the "and", "or", and "not" operators
- Practice logical operators

Comparing Values

- Learn about how to compare values in programming and practice it
- Learn about the less-than operator

Digital Citizenship

• <u>Digital Footprint and Privacy & Security:</u>

Students will be able to:

- learn that they have a digital footprint and that information from it can be searched; copied and passed on; seen by a large, invisible audience, and can be persistent
- recognize that people's online information can be helpful or harmful to their reputation and image
- o consider their own digital footprints and what they want those footprints to be like in the future

Design and Concept Development

- Students will be able to understand and utilize the steps in an engineering design process (similar to the one below):
 - Ask: Identify the Need and Constraints
 - Research the Problem
 - Imagine: Develop Possible Solutions
 - o Plan: Select a Promising Solution
 - Create: Build a Prototype
 - Test and Evaluate Prototype
 - o Improve: Redesign as Needed
- Students will be able to learn to plan in advance for an ongoing assignment
- Students will be able to explain how system limitations can affect project design
- Students will be able to describe how compromise can help keep a project on track and inspire creativity
- Students will be able to design and produce their own app using all the information learned in this course

- Students will be able to develop several apps
 - These apps may include but not limited to:
 - Talk to Me
 - Virtual Pet
 - Magic 8 Ball
 - Ball Bounce/Pong
 - Create your own Adventure
 - Paint Pot/FInger Painting
 - Mash the Mole/Ladybug

IV. STRATEGIES

- Group discussions
- Teacher presentation
- Student projects
- Guided groups
- One to one instruction
- Interactive SmartBoard lessons
- Tutorials
- Online practice
- Logbooks

V. EVALUATION

Assessments may include but are not limited to:

- Teacher Observations
- Class Participation
- Class Discussions
- Class Assignments
- Homework Assignments
- Notebooks/Logbooks
- Student Projects
- Tests and Quizzes
- Anecdotal Records
- Presentations

VI. REQUIRED RESOURCES

- Code Monkey Lessons
- MIT App Lab
- MIT App Companion
- Common Sense Media
- Laptops/Chromebooks
- Tablets
- Headphones
- Design Journals
- Pocket Folders

Supplemental Resources may include, but are not limited to:

- Code Monkey Island
- Code Master
- Makey Makey Classic

Ozobots

VII. SCOPE AND SEQUENCE

Additional time will be spent on reviewing concepts that may need to be revisited from the previous year.

Foundations of Coding (20 days)

- Introduction to CoffeeScript
- Loops
- Variables
- Arrays
- For Loops
- Functions
- Until Loops
- Conditionals
- Logical Operators
- Comparing Values

Digital Citizenship (5 days)

- Digital Footprint
- Privacy and Security
- Career Focus: Technology in Different Fields

Design and Concept Development (20 days)

- Design Process
- Coding in MIT App Lab
- Explore various app types
- Design and Produce Apps